What makes my baby blue?

continued from page 31
rates of mortality at 5 ppm, which is the standard for protection of warm-water fishes. And the recommended nitrate level for warm-water fishes of 90 ppm is highly toxic to some species of frog larvae. Again the science is incomplete, but this evidence supports upholding the 10 ppm nitrate standard.

We are thus caught on the horns of multiple dilemmas. Any restriction on the use of nitrate fertilizers in America’s breadbasket would translate directly into decreased food supplies and increased costs. Removing nitrate from drinking water is expensive, but not nearly as expensive as it would be to remove it from surface water sources and, eventually, from aquifers.

The relationship, if any, between well-water methemoglobinemia and the new non-nitrate cases of infantile methemoglobinemia is poorly understood. If the nitrate standard were raised, would we just assume that Dr. Avery’s theory was correct and Dr. Comly’s wrong? Or would we hedge our bets by providing bottled water to families with at-risk newborns (which would be costly and cumbersome) or undertake an educational effort about the dangers of nitrate-rich well-water for infants (which would be difficult to implement with sufficient thoroughness).

And the argument that methemoglobinemia is easily recognized and treated is problematic, since it depends entirely on the ability of individual physicians to recognize a rare condition and act accordingly.

So hard choices have to be made on the basis of incomplete information. It behooves society to proceed with caution.

Letters

continued from page 21
She is enrolled in a Johns Hopkins program for exceptional students and is a junior at Whitman High School in Bethesda, Md. Sincere thanks for making the magazine available to everyone.

J. Clayton and Claire Ramsdell Lebanon, N.H.

As noted in the box on page 20, we’re delighted to add to our mailing list anyone interested in the subjects covered in the magazine.