Ambrose Cheung, MD, professor of microbiology and immunology at Geisel, was on a mission against methicillin-resistant Staphylococcus aureas, or MRSA. Increasingly resistant to antibiotics, MRSA infections are responsible for 20,000 deaths in the United States annually. In 2012, Cheung had new ideas about how to fight the killer bug, but he lacked the resources and equipment needed to sufficiently explore them.

As any biomedical investigator can attest, it is extraordinarily difficult to obtain federal funding to explore new lines of research—no matter how innovative or promising one’s idea may be. That’s where philanthropy can make a real impact, supporting early stage research and enabling scientists to gather the preliminary data essential for securing large research grants that can eventually lead to clinical trials and regulatory approval. In this way, relatively small philanthropic investments can jump-start important biomedical advances.

In Cheung’s case, the Gustavus and Louise Pfeiffer Research Foundation provided just such critical seed funding. Three years of support from the Pfeiffer Foundation enabled Cheung’s lab to establish that a compound known as DNAC-2 could kill staph bacteria in the presence of the antibiotic oxacillin (a relative of methicillin), even though the bacteria had developed complete resistance to oxacillin. This work earned Cheung the prestigious Harrington Scholar-Innovator Award from the Harrington Discovery Institute in 2017, which provided him with another three years of funding.

In 2019, the National Institutes of Health recognized Cheung’s progress with a grant of $2.5 million. Over the next five years, he’ll receive the monetary and programmatic support he needs to continue developing a drug that can beat MRSA—and eventually save lives.

“I was lucky to have two philanthropic organizations support me. We wouldn’t be where we are today without that early funding.”

LAUREN SEIDMAN